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Abstract

Analytic propagation expressions of pulsed Gaussian beam are deduced by using complex amplitude envelope repre-

sentation and complex analytic signal representation.Numerical calculations are given to illustrate the differences between

them. The results show that themajor difference between them is that there exists singularity in the beamobtained by using

complex amplitude envelope representation. It is also found that singularity presents near propagation axis in the case of

broadband and locates far from propagation axis in the case of narrowband. The critical condition to determine what rep-

resentation should be adopted in studying pulsed Gaussian beam is also given.
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1. Introduction

Propagation properties of pulsed laser beams

have been studied in several works in recent years

[1–9]. In some of these works, complex amplitude
envelope (CAE) representation has been intro-

duced when slowly varying envelope approxima-

tion (SVEA) is performed, from which simplified

expressions can be obtained. The condition that

SVEA theory can be performed, however, is Dx/
x0 � 1, where Dx is FWHM (full width at half

maximum) spectral width of the pulse and x0 is
the carrier frequency. For ultrashort pulsed laser

beam, which already has broad spectra, the condi-

tion Dx/x0 � 1 is not satisfied any more. If the

SVEA theory is still performed to study the propa-

gation properties of such pulsed beam with broad-

band, the pulsed beam obtained by using CAE
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representation will present ‘‘anti-beam’’ behavior

[2,4], i.e., singularity emerges, which loses physical

meaning. In order to avoid this phenomenon, rig-

orous complex analytic signal (CAS) [10] should

be adopted [4]. However, to what value of Dx/x0

is CAE representation applicable? This is an inter-

esting question in the study of pulsed Gaussian

beam (PGB). Another interesting question is how

differences between the PGB obtained by using

CAE representation (CAE solution for short) and

that obtained by using CAS representation (CAS

solution for short) for a fixed value of Dx/x0.

In the present paper we investigate the propaga-
tion properties of the PGB with different band-

width in free space and discuss the above

questions during the study. Propagation expres-

sions of CAE solution and CAS solution of pulsed

beams are deduced in Section 2. Taking the PGB

as an example, propagation expressions of CAE

solution and CAS solution of the beam are given

in Section 3. Comparisons between them are made
by numerical calculations in Section 4. Finally, in

Section 5 the main results obtained in this paper

are summarized.

2. Propagation expressions of pulsed beam in free

space

It is well known that the scalar wave equation in

frequency-domain is given by

ðr2 þ k2ÞV ðr; z;xÞ ¼ 0; ð1Þ
where $2 = o2/ox2 + o2/oy2 + o2/oz2 is the Lapla-

cian operator, r2 = x2 + y2, k = x/c is wave number

and V the complex scalar field. By introducing

V(r,z,x) = V0(r,z,x)exp(�ikz), where V0 is field

amplitude, and performing the paraxial approxi-

mation, Eq. (1) can be written as

r2
? � 2ik

o
oz

� �
V 0ðr; z;xÞ ¼ 0; ð2Þ

where r2
? ¼ o2=ox2 þ o2=oy2 is the transversal

Laplacian operator. A fundamental solution of
Eq. (2) is given by [11]

V 0ðr; z;xÞ ¼ izR
zþ izR

exp �i
kr2

2ðzþ izRÞ
� �

P ðxÞ;

ð3Þ

where zR denotes the Rayleigh diffraction length

and P(x), a parameter only related to fre-

quency, is field at r = 0 and z = 0 in the frequen-

cy-space. The temporal-domain pulsed field can

be derived from the inverse Fourier transform
of Eq. (3)

V ðr; z; tÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1

izR
zþ izR

P ðxÞ

� exp ix t � z
c
� r2

2cðzþ izRÞ
� �� �

dx:

ð4Þ
Because zR ¼ kw2

0=2 is independent of frequency

for isodiffracting pulsed beam, where w0 is waist
width, analytic solution is obtained as

V ðr; z; tÞ ¼ izR
zþ izR

P ðsÞ; ð5Þ

where

P ðsÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
P ðxÞ expðixsÞ dx; ð6Þ

s ¼ t � z
c
� r2

2cðzþ izRÞ : ð7Þ

Consider a real pulse at r = 0 and z = 0 of the form

pðtÞ ¼ AðtÞ cosðx0t þ uÞ; ð8Þ
where A(t)P 0 is the pulse envelope and u its

associated phase factor. Fourier spectrum of p(t)
is given by

P ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
pðtÞ expð�ixtÞ dt

¼ 1

2
½gðx� x0Þ þ g�ð�x� x0Þ�; ð9Þ

where

gðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
AðtÞ expð�iuÞ expð�ixtÞ dt:

ð10Þ
The complex field P(t) of the real pulse p(t)

[ReP(t) = p(t)] in Eq. (8) is obtained by substitut-

ing t for s in Eq. (6). P(t) should be represented
as rigorous complex analytic signal, namely
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PCASðtÞ ¼ 2ffiffiffiffiffiffi
2p

p
Z 1

0

P ðxÞ expðixtÞ dx: ð11Þ

Thus, substituting from Eq. (9) into Eq. (11), it is

obtained

PCASðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

0

½gðx� x0Þ þ g�ð�x� x0Þ�

� expðixtÞ dx: ð12Þ
For pulsed beam with narrowband (Dx/x0 � 1),

g(x � x0) takes appreciable values only within

small interval. In such case the term g*(�x � x0)

can be neglected and the lower integration limit

can be extended to �1 [4]. Therefore, Eq. (12)

can be written as follows:

PCAEðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
gðx� x0Þ expðixtÞ dx

¼ AðtÞ expðiuÞ expðix0tÞ; ð13Þ
A(t)exp(iu) is complex amplitude envelope and
Eq. (13) is CAE representation, which is approxi-

mation of CAS representation in the case of nar-

rowband (Dx/x0 � 1). Hence, P(s) can be

expressed by using CAE representation Eq. (13)

when the SVEA theory is performed. Substituting

from Eq. (13) into Eq. (5) yields

V CAEðr; z; tÞ ¼ izR
zþ izR

AðsÞ exp½iðx0sþ uÞ�: ð14Þ

For pulsed beam with broadband, however, there

is Dx/x0 � 1 and SVEA theory could not be per-

formed. Therefore, P(s) should be expressed by

using CAS representation Eq. (12) rather than

CAE representation Eq. (13). Substituting from

Eq. (12) into Eq. (5), the pulsed beam with broad-
band is obtained of the form

V CASðr; z; tÞ ¼ izR
zþ izR

1ffiffiffiffiffiffi
2p

p
Z 1

0

½gðx� x0Þ

þ g�ð�x� x0Þ� expðixsÞ dx: ð15Þ

3. Examples

Consider a PGB whose real form at r = z = 0 is

given by

pðtÞ ¼ exp � ag
t
T

	 
2� �
cosðx0t þ uÞ; ð16Þ

where ag ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
and T is pulse duration

(FWHM). From Eq. (9), Fourier spectrum of the

PGB is obtained as

PðxÞ ¼ Tffiffiffi
2

p
ag

exp � T 2ðx� x0Þ2
2a2g

 !
: ð17Þ

Substituting from Eq. (17) into Eq. (11), CAS rep-

resentation of the PGB is deduced as

PCASðtÞ¼ 1

2
exp �a2g

t2

T 2

� �(
expð�ix0t� iuÞ:

� 1� erf
Tx0

2ag
� iag

t
T

� �� �
þ expðix0tþ iuÞ

� 1� erf �Tx0

2ag
� iag

t
T

� �� �)
; ð18Þ

where erf( ) is the error function. For the PGB

with narrowband (Dx/x0 � 1), Eq. (18) can be ex-

pressed by using CAE representation

PCAEðtÞ ¼ exp � ag
t
T

	 
2� �
expðix0t þ iuÞ: ð19Þ

Substituting from Eq. (19) into Eq. (5), CAE

solution of the PGB with narrowband is ob-

tained as

V CAEðr; z; tÞ ¼ izR
zþ izR

� exp iðx0sþ uÞ � ðagcx0sÞ2
h i

;

ð20Þ
where c = Dx/x0 = 1/x0T denotes bandwidth. Sub-

stituting from Eq. (18) into Eq. (5), CAS solution of

the PGB with broadband (Dx/x0 � 1) is given by

V CASðr; z; tÞ
¼ izR
2ðzþ izRÞ exp �ðagcx0sÞ2

h i

� expð�ix0s� iuÞ 1� erf
1

2agc
� iagcx0s

� �� ��

þexpðix0sþ iuÞ 1� erf � 1

2agc
� iagcx0s

� �� ��
:

ð21Þ
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4. Numerical calculations and analyses

Eqs. (20) and (21) are bases of numerical calcu-

lations and analyses in this paper. Firstly, we make

a comparison between them in the form. Eq. (21)
can be rewritten as

V CASðr; z; tÞ ¼ izR
zþ izR

� exp iðx0sþ uÞ � ðagcx0sÞ2
h i

n;

ð22Þ
where

n¼ 1

2
exp½�2iðx0sþuÞ� 1� erf

1

2agc
� iagcx0s

� �� ��

þ 1� erf � 1

2agc
� iagcx0s

� �� ��
: ð23Þ

Compared with VCAE(r,z,t), VCAS(r,z,t) includes

the term n, which is the main difference between

CAE and CAS solutions. The lack of the term

n in Eq. (20) is caused by neglected the term

g*(�x � x0) when CAE solution is deduced from

Eq. (12) to Eq. (13). By using numerical calcula-

tions, the two solutions are compared detailedly
as follows. Fig. 1 gives the radial and temporal

waveforms of the PGB with c = 0.32 (T = 1.77

fs) at z = 3zR = 8.86 · 103 mm, where the calcula-

tion parameters are w0 = 1 mm, k0 = 1064 nm

(x0 = 1.77 fs�1, T0 = 3.55 fs). As can be seen, dif-

ferences between ICAE(r,z,t) = jVCAE(r,z,t)j2 and

ICAS(r,z,t) = jVCAS(r,z,t)j2 become great with

increasing radius r and singularity of ICAE(r,z,t)
emerges in the end. Obviously, the lack of n in

VCAE(r,z,t) results in the emergence of singularity

of ICAE(r,z,t) near z-axis (r = 0) for the PGB with

broadband. The radial and temporal waveforms

of the PGB with c = 0.08 (T = 7.1 fs) at

z = 10zR = 2.95 · 104 mm are depicted in Fig. 2,

where the calculation parameters are the same

as those in Fig. 1. We can see that distributions
of ICAE(r,z,t) and ICAS(r,z,t) are the same within

the plotted region in Fig. 2. It is concluded from

Figs. 1 and 2 that differences between CAE solu-

tion and CAS solution of the PGB are great in

the case of broadband and few in the case of

narrowband.

For the PGB with narrowband, however,

there still exists singularity by using CAE repre-
sentation, which can be seen from Fig. 3. The

singularities� radial positions rs of CAE solution

of the PGB as a function of bandwidth is given

in the figure, in which it is shown that the

broader the pulse bandwidth, the nearer singu-

larity locates to z-axis (r = 0), and vice versa. It

is also seen that rs of CAE solution of the

PGB with c = 0.08 at z = 0, zR and 3zR are 11,
16 and 34 mm, and they are 3, 4 and 9 mm with

c = 0.32, respectively. If rs > 10w0 is regarded as

condition that the singularity can be neglected,

CAE solution and CAS solution of the PGB

are the same at z = 0 when bandwidth of the

pulse is c = 0.08. For the PGB with narrower

Fig. 1. Radial and temporal waveforms of the PGB with

c = 0.32 at z = 3zR = 8.86 · 103 mm: (a) CAE solution; (b) CAS

solution.
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bandwidth c = 0.01 (T = 56.5 fs), the radial posi-

tions rs of singularities are 85, 121 and 268 mm

at z = 0, zR and 3zR, respectively, which are

great distances that lead singularities have few

effects on the study of pulse as compared with

w0 = 1 mm. Therefore, the approach in [2] is

applicable to the PGB with narrowband.

It is also shown that there exists time delay of
the peaks of off-axis pulse in comparison with

that of the on-axis pulse in Figs. 1 and 2.

According to Eq. (7), the complex time delay is

given by

t0 ¼ r2

2cðzþ izRÞ : ð24Þ

From Eq. (24), it is known that the farther the

point locates from the z-axis, the more time delay

there is.

The differences between CAE solution and

CAS solution of the PGB can also be seen from

the complex field distributions of them. Tempo-

ral waveforms of complex field of the PGB with
c = 0.32 are depicted in Fig. 4, which shows that

differences between the real parts of VCAS (solid

lines) and that of VCAE (dashed lines) are very

small on the axis but great off the axis. From

Fig. 4, it is also seen that VCAS presents spatio-

temporal couplings such as time delay of the

peaks of off-axis field and frequency lessening

with increasing r, whereas VCAE only presents
the time delay and is failed to show frequency

shift. The time delay of both of them is given

by Eq. (24). Fig. 5 gives temporal waveforms

of complex field of the PGB with c = 0.08, from

which it is seen that the real parts of VCAS

(solid lines) and that of VCAE (dashed lines)

are the same and the lines coincide with each

other both on and off the axis. In Fig. 5, both
VCAS and VCAE present time delay and fre-

quency shift. The calculation parameters of Figs.

4 and 5 are the same as those in Fig. 1. From

the two figures, it is further concluded that

CAE representation could only be used for the

PGB with narrowband and rigorous CAS repre-

sentation should be used in the case of

broadband.
In order to explain the emergence of singular-

ity and the effects of bandwidth on its radial

position explicitly, Eq. (20) at z = 0 and t = 0 is

written as

Fig. 2. Radial and temporal waveforms of the PGB with

c = 0.08 at z = 10zR = 2.95 · 104 mm: (a) CAE solution; (b)

CAS solution.
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Fig. 3. Radial position rs of singularity versus pulse bandwidth c.
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Fig. 4. Temporal waveforms of the PGB with c = 0.32. The solid lines are real parts of VCAS. The dashed lines are real parts of VCAE.
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Fig. 5. Temporal waveforms of the PGB with c = 0.08. The solid lines are real parts of VCAS. The dashed lines are real parts of VCAE

(the dashed lines cannot be seen because the two lines coincide with each other).
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V CAEðr; 0; 0Þ ¼ exp � r2

w2
0

þ a2g
r4c2

w4
0

� �
: ð25Þ

From Eq. (25), it is found that the emergence of

singularity of VCAE is caused by the existence of

a term exp a2g
r4c2

w4
0

	 

, which results in the ten-

dency of energy to infinite as r increases. At

the same time, this term indicates that VCAE

also depends on bandwidth c of the PGB. The

term takes small value and singularity emerges

far from z-axis in the case of narrowband, and

vice versa. Eq. (22) at z = 0 and t = 0 can be

written as

V CASðr; 0; 0Þ ¼ exp � r2

w2
0

þ a2g
r4c2

w4
0

� �
g; ð26Þ

where

g ¼ 1

2
1� erf � 1

2agc
þ agc

r2

w2

� �
þ exp 2

r2

w2

� ��

� 1� erf
1

2agc
þ agc

r2

w2

� �� ��
: ð27Þ

As compared with Eq. (25), the factor g is con-

cluded in Eq. (26), which leads that Eq. (26)

tends to zero as r increases. By using Eqs. (25)
and (26), radial distributions of amplitude of

the PGB with c = 0.32 and c = 0.08 at z = 0

and t = 0 is depicted in Fig. 6, from which it is

seen that amplitude distribution of CAE solution

makes a great deal of difference with that of

CAS solution with broadband but few difference

in the case of narrowband near z-axis. As can be

seen, CAE solution with broadband is failed to
describe the PGB (Fig. 6(a)), but in the case of

narrowband the solution keeps Gaussian shape

and singularity of it emerges far from z-axis

(Fig. 6(b)), in which the singularity can be

neglected.

It is noted that the PGB with c = 0.08 is not

narrowband pulsed beam in the strict senses. In

this paper, the reason that the PGB with
c = 0.08 is included in narrowband pulsed beam

is that rs > 10w0 is regarded as condition that

the singularity can be neglected at the plane

z = 0 and there are few differences between

CAE solution and CAS solution within the

framework considered in the case of c = 0.08.

Obviously, within the condition stated, CAE rep-

resentation can be used for the PGB with c =
0.08 and CAS representation should be adopted

for the PGB with c > 0.08, namely c = 0.08 can

be regarded as a critical condition to determine

what representation should be adopted.

5. Conclusions

In this paper, CAE and CAS representations

used to study propagation properties of the

PGB are compared detailedly. Numerical calcu-

lations illustrate that it is CAS representation

rather than CAE representation that should be

used for the PGB with broadband (Dx/x0 � 1).

The reason for it is that singularity emerges near
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0
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0.6

0.8

1
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,z
,t

|)
(

.a
.u
)

r (mm)(b)

(a)

Fig. 6. Radial distributions of amplitude at z = 0 and t = 0 of

the PGB with: (a) c = 0.32; (b) c = 0.08. The solid lines are that

of CAE solution. The circle lines are that of CAS solution.
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z-axis for CAE solution, which is failed to de-

scribe the PGB. But for the PGB with narrow-

band (Dx/x0 � 1), because singularity locates

far from z-axis for CAE solution and field distri-

butions near z-axis are the same as that of CAS
solution, the SVEA can be performed and CAE

representation is applicable. In addition, CAE

solution with broadband is failed to show fre-

quency shift, which is reported to be one of

characters of the PGB, but CAS solution is able

to show it both in the case of narrowband and

in the case of broadband. Hence, it is necessary

to choose approach appropriately in the study of
PGB with different bandwidth. The results ob-

tained in this paper demonstrate that, under cer-

tain conditions, CAE representation can be used

if the bandwidth of PGB satisfies c = 0.08. Other

pulsed beams, such as Lorentz pulse and Hyper-

bolic Secant pulse, are also faced with the same

problems mentioned in introduction. Further

study for them seems to be necessary and the
approach in our paper is applicable to them.
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